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Abstract

We have calculated the electronic structure and elastic properties of AlMgB14

for which, with small chemical modification, ultra hardness was reported re-

cently. The calculated density of states and elastic constants are presented.

Additionally, we have calculated the elastic anisotropy and elastic wave ve-

locity. Together with the measured hardness, the calculated shear modulus is

consistent with the empirical proportionality observed between shear moduli

and microhardness.
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I. INTRODUCTION

After their discovery1, boron rich compounds that consist of B12 icosahedra have been

the subject of numerous investigations because of their novel scientific properties and po-

tential technical applications. Their common properties originate from B12 icosahedra while

their individual character is determined by interstitial atoms. A common characteristic is

the refractory nature of boride compounds2, and many practical applications of boron-rich

compounds are related to this property - with uses in the field of nuclear energy, aerospace

and the military.3 Recently, Ames Laboratory scientists discovered an interesting mechani-

cal property for AlMgB14. Its hardness reached that of the second hardest material, cubic

BN(c-BN) with small chemical additions - TiB2 addition gives 35 - 46 GP hardness and

Si gives 32 - 37 GPa.4 This observation is very intriguing because AlMgB14 is far from the

conventional paradigm for ultrahard materials, lacking the usual high symmetry, small unit

cell, and small bond lengths. Scientifically it might provide a good example to investigate

how hardness can be enhanced by microstructural complexity and chemical doping. It may

also prove very useful because it may replace the expensive c-BN for technical applications.

The structure of AlMgB14 had been reported by Matkovich and Economy5 and after that

there have been several additional publications about its crystal structure6–8, optical and

electric properties.9,10 Most of these studies were experimental. Although electronic structure

investigations are very important for understanding material properties, the complexity

of this material is quite formidable even for modern computational methods, and to our

knowledge no previous calculations have been reported. AlMgB14 has the orthorhombic

structure with lattice constants a=0.5848 nm, b=1.0312 nm, c=0.8112 nm , space group

Imma, and 4 formula units per cell. Additionally, it has vacancies(2 per cell) at the metal

sites. With new parallelized computational band structure techniques11 we have been able to

investigate the electronic structure for this complex material and have calculated its elastic

constants.
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II. ELASTIC CONSTANTS, RESULTS

Elastic constants are believed to be related to the strength of materials. Especially,

the bulk and shear moduli are frequently calculated for materials when investigating their

hardness. The bulk modulus calculation for a single crystal is easier than the shear modulus

calculation because hydrostatic pressure does not change the crystal symmetry. However the

correlation between material hardness and shear modulus exhibits better consistency than for

the bulk modulus.12 Furthermore, the whole set of elastic stiffness constants(ESCs), or elastic

compliance constants(ECCs), have to be calculated to extract the theoretical polycrystalline

bulk modulus and shear modulus. And, because the number of these constants increases as

the crystal symmetry decreases, the polycrystalline bulk and shear modulus calculations for

low symmetry materials can be computationally demanding.

The elastic strain tensor εij is related to the stress σij by Hooke’s law

σij =
3∑

k ,l=1

cijklεkl (1)

Using Voigt’s contraction13, this is usually written as :

σα =
6∑

β=1

cαβεβ (2)

where

σα = σij ,

εβ = εkl if β =1,2 or 3

εβ = 2εkl if β =4,5 or 6

The number of independent components of the ESC tensor cαβ depends on crystal symmetry.

This number is 3 for a cubic material, 5 for a hexagonal one, 9 for an orthorhombic one,

and 21 for a triclinic material.13

There are two approximations used to calculate the extreme bulk and shear modulus

for a statistically isotropic polycrystalline single phase material - the Voigt method and

3



the Reuss method.13 The first one assumes a uniform strain and gives the bulk(KV ) and

shear(GV ) moduli as functions of the ESCs.

KV =
1

9
(c11 + c22 + c33) +

2

9
(c12 + c23 + c13) (3)

GV =
1

15
(c11 + c22 + c33)−

1

15
(c12 + c13 + c23) +

1

5
(c44 + c55 + c66) (4)

The second one assumes a uniform stress and gives K and G as function of the ECCs.

1

KR

= (s11 + s22 + s33) + 2 (s12 + s23 + s13) (5)

1

GV

=
4

15
(s11 + s22 + s33)−

4

15
(s12 + s13 + s23) +

3

15
(s44 + s55 + s66) (6)

If they are applied to calculate average isotropic elastic moduli for polycrystalline samples

using the anisotropic single crystal elastic constants, they give the theoretical maximum

(Voigt method) and minimum (Reuss method) values of isotropic elastic moduli.14 Fre-

quently, their arithmetic averages K = (KV + KR) /2, G = (GV + GR) /2 are taken for an

estimation of the elastic properties. The other two elastic constants describing an isotropic

polycrystalline material, the Young modulus(E) and the Poisson ratio(ν), can be expressed

as

E =
9KG

3K + G
(7)

ν =
3K − 2G

2 (3K + G)
(8)

Additionally, we remark that the limiting values of the Voigt and Reuss approximations are

the same for a polycrystalline sample of isotropic crystallites, but a difference is expected for

an aggregate of anisotropic crystallites. The magnitude of the difference is a function only

of the degree of elastic anistropy possessed by the crystal under consideration. Therefore,

it is useful to evaluate the percent of elastic anisotropy of materials.14 For bulk(AK) and

shear(AG), this can be defined as
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AK =
KV −KR

KV + KR

(9)

AG =
GV −GR

GV + GR

(10)

The elastic anisotropy of materials is a primary cause for detrimental microcracks that are

induced in ceramics.15,16

Because the ESC tensor c is related to the ECC tensor s by

cs = I6

the polycrystalline elastic moduli for both approximations can be calculated by knowing

either tensor. We calculated all of the ESCs for AlMgB14. After choosing the strain com-

ponents corresponding to each ESC, we established 9 corresponding distortion matrices

D.16 With different values of the distortion parameter, these symmetric distortion matrices

transformed the original lattice vector set to new distorted lattice vector sets R′ = RD.

We calculated the total energies of these distorted crystal structures for several different

distortion magnitudes. ESCs are estimated from the total energies. Actually, the ESCs are

given by the second order coefficients in the polynomial fit of the total energy versus the

distortion parameter.17 For a more detailed explanation of the distortion matrix, the reader

is refered to Ref. 16.

We used the parallelized full-potential, linear augmented plane method11 within the local-

density approximation with the Hedin-Lindqvist18 exchange-correlation potential. Most of

these calculations were performed using the SP machine at NERSC. We iterated with the

equivalent of 64 k-points in the whole Brillouin zone to calculate self-consistent total energies.

The number of augmented plane waves for these calculations was about 3500. The muffin-tin

radius is 1.5 a.u. for B atoms, 2.2 a.u. for Al atoms and 2.7 a.u. for Mg atoms. The value

of the plane-wave cutoff KRmax= 6 was determined by the radius of the B atoms because

they have a much smaller muffin-tin radius than the metal atoms. We calculated both the

64 atoms per cell case and the 62 atoms per cell case, which has two vacancies at the metal
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sites.5,7. As shown in Fig.1, one vacancy is at the Al site (0.0, 0.5, 0.0) and another is at

the Mg site (0.75, 0.5, 0.391)

Calculations for the full 64 atoms per cell structure show that the Fermi level lies in

states above a band gap of about 1eV. With the observed 25% vacancies on the Al and Mg

sites, calculations indicate that the Fermi level falls below the gap, near the top of a broad

set of bands having predominately boron charater(see Fig.2). The vacancies lower the total

energy per atom below that of the 64 atoms per cell structure. For the 62 atoms case, the top

most valence band is half full (one hole per unit cell), and thus the ideal ordered structure

should be metallic. With disordered vacancies, the scattering of electrons near the top of

the occupied boron bands at the Fermi level can be very high and some of the electronic

states could become localized. One would thus expect transport properties such as electrical

resistivity to be sensitive to sample preparation methods since processing parameters such

as cooling rate will determine the degree of ordering of the vacancies and induce other

microstructural defects affecting scattering. It is also possible that the vacancies could

cluster locally (e.g. near defects or grain boundaries) and thus affect the local electronic

structure, causing some parts to be ceramic like and others parts to have some degree of

metallic behavior. Chemically doping the sample, for example with Si, would add electrons

to the valence band. It is expected that when the valence bands are completely filled and the

Fermi level lies within the gap, the material will have maximum resistivity, and properties

may change rapidly as the nature of the electronic states at the Fermi level change quickly

with doping. Fig.3 shows the DOS for the sample which has one Si atom at a Al site and

two vacancies at metal sites. The Fermi level lies in the gap. There are Si impurity states

in the original 1eV gap.

With vacancies, the positions of atoms surrounding each vacancy are slightly shifted from

the ideal lattice coordinates. The new relaxed position can be ascertained using total force

calculations.19,20 Although this results in lower total energy, it is well known that atomic

position relaxation usually gives smaller elastic constants than for the unrelaxed case.21 Fig.4

is the density of states(DOS) for the 62 atoms per cell case with optimized atomic positions.
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For this calculation, the 62 atoms are relaxed until the force components exerted on each

atom are decreased to less than 0.014(eV/Å). Compared with the unrelaxed case, the total

energy is lower and the DOS is decreased near the Fermi level(see Fig.2). Although the

relaxed structure is more stable than the unrelaxed one, preliminary calculations for relaxed

AlMgB14 shows that the elastic constants do not change much in the optimized case.

Table I shows the ESC obtained by polynominal fits to the total energy and Table II

gives the elastic properties calculated by Eq(3) - Eq(8) for both the 64 and 62 atom cases.

Included in Table II are the two extreme values (Voigt and Reuss), and the average. Most

of the constants are slightly decreased with the presence of vacancies. The calculated bulk

and shear moduli are not as big as those for superhard materials, which is to be expected for

AlMgB14, because the superhardness of AlMgB14 compounds is attained only by chemical

and microstructural modification. The measured Vickers hardness of AlMgB14 is 27-28 GPa

for a single crystal8 and 32-35 GPa for a polycrystalline sample.4 The calculated value of

the shear modulus of AlMgB14 (215 GPa) is similar with those of B6O (204 GPa), rutile-

SiO2 (220 GPa), and SiC (196 GPa). The corresponding microhardnesses are 35, 33, 29

GPa. AlMgB14 has a reasonable position on the shear modulus vs hardness plot(Fig.5).12

Another interesting quantity given in Table II is the Poisson ratio. This has been used to

charaterize bonding, with ν = 0.25 suggested as the low limit for a central force solid.16

The low Poisson ratio of AlMgB14 and the large value of the ratio of the shear modulus to

bulk modulus (G/K=1.13) suggest that this material has noncentral, directional covalent

bonds.22

Table III shows the calculated anisotropy and elastic wave velocity in AlMgB14, with

the assumption that this material is isotropic polycrystalline. The relationships between the

sound wave velocity and the elastic constants are

CL =

[
K + (4/3)G

ρ

]1/2

(11)

CT =

[
G

ρ

]1/2

(12)
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and their average is

CM =

[
1

3

(
2

C3
T

+
1

C3
L

)]−1/3

(13)

The transverse modes are degenerate in isotropic polycrystalline materials.13 One interesting

observation is that the sound wave velocity approaches that of diamond’s. Even though there

are vacancies, AlMgB14 has nearly isotropic elastic properties. It might be explained by the

consideration of the role of icosahedra in boron-rich solids. The nearly isotropic elastic

properties of boron rich solids could be a common character that might be attributed to

the iscosahedra skelton. The icosahedra are centered at (0.25, 0.25, 0.25), (0.25, 0.75, 0.25),

(0.75, 0.25, 0.75) and (0.75, 0.75, 0.75) in AlMgB14 and are highly symmetric(see Fig.1).

In summary, we have calculated elastic properties - elastic constants, elastic anisotropy

and elastic wave velocities for AlMgB14. The elastic moduli and the measured microhardness

are consistent with other hard materials, but there is little that can be directly related to the

dramatic increase in hardness caused by Si doping. The microstructure of these chemically

modified samples needs to be investigated. Experiments of optical properties and even

electrical conductivity would help elucidate the electronic structure and the possible role of

defects and doping.
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FIGURES

FIG. 1. Crystal structure of AlMgB14 with two vacancies at metal sites. The red spheres are

Mg atoms, blue are Al atoms, white are vacancy sites and green are boron atoms and icosahedra.

The vertical direction is along (0,1,0) and the horizontal direction is along (0,0,1).

FIG. 2. The calculated density of states for AlMgB14 with 62 atoms/cell. The Fermi level

lies below a band gap of about 1eV and there is one hole per cell. The states below the gap are

predominantly due to boron, while the states above the gap are primarily due to Al and Mg.

FIG. 3. The calculated density of states for AlMgB14 with Si doping. One Si atom replaces one

Al atom with two vacancies at metal sites. The Fermi level lies in the gap. There are Si impurity

states in the original 1eV gap.

FIG. 4. The calculated density of states for AlMgB14 with relaxed 62 atoms/cell. It shows the

decreased number of states near the Fermi level compared to unrelaxed case.

FIG. 5. A plot of microhardness vs shear modulus for various materials (see reference 12). The

filled circle shows the position of AlMgB14.
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TABLES

TABLE I. The calculated elastic stiffness constants for both 64 atoms/cell and 62 atoms/cell

AlMgB14. The numbers within parentheses are fitting errors.

64 atoms 62 atoms

(GPa) (GPa)

c11 545 (1.89) 503 (1.45)

c22 538 (0.81) 500 (1.63)

c33 531 (2.27) 496 (2.86)

c44 199 (0.03) 183 (0.00)

c55 254 (0.67) 252 (0.10)

c66 221 (0.04) 211 (0.06)

c11+c22-2c12 1011 (14.93) 936 (11.23)

c11+c33-2c13 929 (8.79) 844 (0.78)

c22+c33-2c23 988 (16.2) 927 (8.79)

c12 36 (8.82) 33.5 (7.16)

c13 73.5 (6.48) 77.5 (2.55)

c23 40.5 (9.64) 34.5 (6.64)
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TABLE II. The elastic properties(bulk modulus (K), shear modulus (G), Young modulus (E),

and Poisson ratio (ν)) of polycrystalline AlMgB14 calculated with the Voigt and Reuss assumptions.

The constants without the subscripts are averages.

64 atoms 62 atoms

KV (GPa) 212.67 198.89

KR(GPa) 212.13 184.03

K(GPa) 212.40 191.46

GV (GPa) 232.40 219.43

GR(GPa) 230.12 211.98

G (GPa) 231.26 215.71

E (GPa) 509.04 470.45

ν 0.1 0.09

TABLE III. The percentage anisotropy of bulk(AK) and shear(AG) are given along with the

calculated longitudinal(CL), transverse(CT ), and average(CM ) sound velocities. The transverse

modes are degenerate in isotropic polycrystaline materials.

64 atoms 62 atoms

AK(%) 0.13 3.88

AG(%) 0.49 1.73

CL(km/s) 13.8 13.4

CT (km/s) 9.17 9.01

CM (km/s) 10.03 9.84
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